New Realizations of Somewhere Statistically Binding Hashing and Positional Accumulators
نویسندگان
چکیده
A somewhere statistically binding (SSB) hash, introduced by Hubáček and Wichs (ITCS ’15), can be used to hash a long string x to a short digest y = Hhk(x) using a public hashing-key hk. Furthermore, there is a way to set up the hash key hk to make it statistically binding on some arbitrary hidden position i, meaning that: (1) the digest y completely determines the i’th bit (or symbol) of x so that all preimages of y have the same value in the i’th position, (2) it is computationally infeasible to distinguish the position i on which hk is statistically binding from any other position i′. Lastly, the hash should have a local opening property analogous to Merkle-Tree hashing, meaning that given x and y = Hhk(x) it should be possible to create a short proof π that certifies the value of the i’th bit (or symbol) of x without having to provide the entire input x. A similar primitive called a positional accumulator, introduced by Koppula, Lewko and Waters (STOC ’15) further supports dynamic updates of the hashed value. These tools, which are interesting in their own right, also serve as one of the main technical components in several recent works building advanced applications from indistinguishability obfuscation (iO). The prior constructions of SSB hashing and positional accumulators required fully homomorphic encryption (FHE) and iO respectively. In this work, we give new constructions of these tools based on well studied number-theoretic assumptions such as DDH, Phi-Hiding and DCR, as well as a general construction from lossy/injective functions.
منابع مشابه
Succinct Adaptive Garbled RAM
We show how to garble a large persistent database and then garble, one by one, a sequence of adaptively and adversarially chosen RAM programs that query and modify the database in arbitrary ways. Still, it is guaranteed that the garbled database and programs reveal only the outputs of the programs when run in sequence on the database. The runtime, space requirements and description size of the ...
متن کاملPash: efficient genome-scale sequence anchoring by Positional Hashing.
Pash is a computer program for efficient, parallel, all-against-all comparison of very long DNA sequences. Pash implements Positional Hashing, a novel parallelizable method for sequence comparison based on k-mer representation of sequences. The Positional Hashing method breaks the comparison problem in a unique way that avoids the quadratic penalty encountered with other sensitive methods and c...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملCompressed Image Hashing using Minimum Magnitude CSLBP
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...
متن کاملFinding Similar Movements in Positional Data Streams
In this paper, we study the problem of efficiently finding similar movements in positional data streams, given a query trajectory. Our approach is based on a translation-, rotation-, and scale-invariant representation of movements. Nearneighbours given a query trajectory are then efficiently computed using dynamic time warping and locality sensitive hashing. Empirically, we show the efficiency ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015